偽尿嘧啶合成酶是負責細胞RNA最常見且在演化上高度保留的翻譯後修飾的酶。這些酶在RNA鏈中特定的尿嘧啶殘基上催化異構化反應。
偽尿嘧啶合成酶的功能是在RNA分子中催化尿嘧啶殘基的異構化反應。這種修飾反應對於調節RNA的結構和功能至關重要。偽尿嘧啶合成酶能夠辨識並選擇性地催化特定的尿嘧啶殘基,使其轉變成偽尿嘧啶。這種修飾可以改變RNA的三維結構和穩定性,進而影響其在細胞中的功能。
根據目前的研究,已經發現了六個偽尿嘧啶合成酶家族,它們在序列上有很低的相似性,但在結構上有共同的核心結構。每個家族的合成酶都有特定的特異性,能夠準確地辨識和修飾RNA中的特定位置。這種特異性是通過對保留的催化結構進行結構變化來實現的。儘管如此,偽尿嘧啶合成酶的催化機制仍然不完全清楚,這是核酸修飾酶學中一個具有挑戰性的問題。
偽尿嘧啶合成酶的修飾反應在生物體內具有廣泛的重要性。它們參與調節RNA的轉譯、穩定性、抗病毒防禦和其他生物學過程。此外,偽尿嘧啶合成酶也與許多疾病的發展和進展有關,包括癌症、神經系統疾病和免疫系統異常。
總結來說,偽尿嘧啶合成酶是一類重要的酶,負責對RNA進行翻譯後修飾,調節其結構和功能。這些酶通過催化尿嘧啶的異構化反應,使其轉變為偽尿嘧啶,從而影響RNA的穩定性和功能。進一步研究偽尿嘧啶合成酶的催化機制和生物學功能將有助於深入了解核酸修飾的重要性以及與疾病發展的關聯。
折疊內容
Pseudouridine (Ψ) synthases are the enzymes responsible for the most abundant and phylogenetically conserved posttranscriptional modification of cellular RNAs. These enzymes catalyze an isomerization reaction of specific uridine residues within an RNA chain.
Warning:
The NCBI web site requires JavaScript to function.
more…
An official website of the United States government
Here’s how you know
The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before
sharing sensitive information, make sure you’re on a federal
government site.
The site is secure.
The https:// ensures that you are connecting to the
official website and that any information you provide is encrypted
and transmitted securely.
Log in
Show account info
Close
Account
Logged in as:
username
Dashboard
Publications
Account settings
Log out
Access keys
NCBI Homepage
MyNCBI Homepage
Main Content
Main Navigation
Bookshelf
Search databaseBooksAll DatabasesAssemblyBiocollectionsBioProjectBioSampleBooksClinVarConserved DomainsdbGaPdbVarGeneGenomeGEO DataSetsGEO ProfilesGTRHomoloGeneIdentical Protein GroupsMedGenMeSHNLM CatalogNucleotideOMIMPMCPopSetProteinProtein ClustersProtein Family ModelsPubChem BioAssayPubChem CompoundPubChem SubstancePubMedSNPSRAStructureTaxonomyToolKitToolKitAllToolKitBookghSearch termSearch
Browse Titles
Advanced
Help
NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Madame Curie Bioscience Database [Internet].Show detailsAustin (TX): Landes Bioscience; 2000-2013.ContentsSearch term < PrevNext >
Pseudouridine Formation, the Most Common Transglycosylation in RNAEugene G. Mueller and Adrian R. Ferré-D’Amaré.Author Information and AffiliationsAuthorsEugene G. Mueller and Adrian R. Ferré-D’Amaré*.Affiliations* Corresponding Authors: Adrian R. Ferré-D’Amaré-Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109-1024, USA. Email: gro.crchf@errefa and Eugene G. Mueller—Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA. Email: ude.ellivsiuol@relleum.enegue
DNA and RNA Modification Enzymes: Structure, Mechanism, Function and Evolution, edited by Henri Grosjean.
© 2009 Landes BioscienceRead this chapter in the Madame Curie Bioscience Database here.Pseudouridine (Ψ) synthases are the enzymes responsible for the most abundant and phylogenetically conserved posttranscriptional modification of cellular RNAs. These enzymes catalyze an isomerization reaction of specific uridine residues within an RNA chain. Sequence and structure analyses have thus far demonstrated the existence of six Ψ synthase families that share a common core domain structure despite very low sequence identity. Ψ synthases display exquisite specificity in pinpointing the site of pseudouridylation within their RNA substrates, and each enzyme achieves this by structural elaborations of the conserved catalytic domain. The catalytic mechanism, presumably shared between all Ψ synthases, is still not well understood and remains a challenging problem in the enzymology of nucleic acid modifications.Introduction and NomenclaturePseudouridine (Ψ) was discovered to be the most abundant posttranscriptionally modified nucleotide in cellular RNAs in the 1950s.1 Chemical characterization of what was called “the fifth nucleotide” showed Ψ to be the C5-glycoside isomer of uridine.2-6 Early biochemical analyses demonstrated that Ψ synthases p
Read More: What is the function of the pseudouridine synthase?